

Lines and Angles

Exercise: 6.1 (Page No: 96)

1. In Fig. 6.13, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^\circ$ and $\angle BOD = 40^\circ$, find $\angle BOE$ and reflex $\angle COE$.

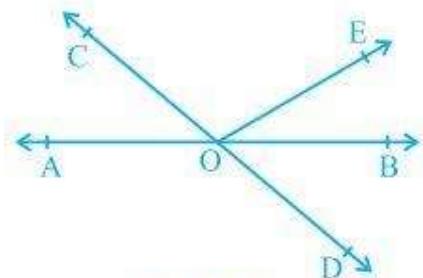


Fig. 6.13

Solution:

From the diagram, we have

$(\angle AOC + \angle BOE + \angle COE)$ and $(\angle COE + \angle BOD + \angle BOE)$ forms a straight line.
So, $\angle AOC + \angle BOE + \angle COE = \angle COE + \angle BOD + \angle BOE = 180^\circ$

Now, by putting the values of $\angle AOC + \angle BOE = 70^\circ$ and $\angle BOD = 40^\circ$ we get
 $\angle COE = 110^\circ$ and $\angle BOE = 30^\circ$

So, reflex $\angle COE = 360^\circ - 110^\circ = 250^\circ$

2. In Fig. 6.14, lines XY and MN intersect at O. If $\angle POY = 90^\circ$ and $a : b = 2 : 3$, find c.

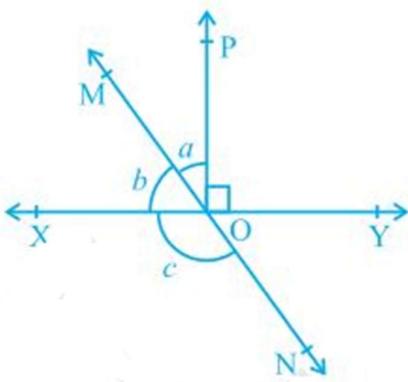


Fig. 6.14

Solution:

We know that the sum of linear pair is always equal to 180°

So,

$$\angle POY + a + b = 180^\circ$$

Putting the value of $\angle POY = 90^\circ$ (as given in the question), we get,

$$a+b = 90^\circ$$

Now, it is given that $a:b = 2:3$, so

Let a be $2x$ and b be $3x$

$$\therefore 2x+3x = 90^\circ$$

Solving this, we get

$$5x = 90^\circ$$

$$\text{So, } x = 18^\circ$$

$$\therefore a = 2 \times 18^\circ = 36^\circ$$

Similarly, b can be calculated, and the value will be

$$b = 3 \times 18^\circ = 54^\circ$$

From the diagram, $b+c$ also forms a straight angle, so

$$b+c = 180^\circ$$

$$c+54^\circ = 180^\circ$$

$$\therefore c = 126^\circ$$

3. In Fig. 6.15, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

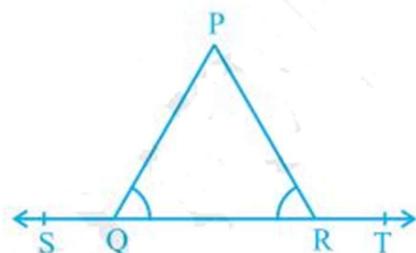


Fig. 6.15

Solution:

Since ST is a straight line, so

$$\angle PQS + \angle PQR = 180^\circ \text{ (linear pair) and}$$

$$\angle PRT + \angle PRQ = 180^\circ \text{ (linear pair)}$$

$$\text{Now, } \angle PQS + \angle PQR = \angle PRT + \angle PRQ = 180^\circ$$

Since $\angle PQR = \angle PRQ$ (as given in the question)

$\angle PQS = \angle PRT$. (Hence proved).

4. In Fig. 6.16, if $x+y = w+z$, then prove that AOB is a line.

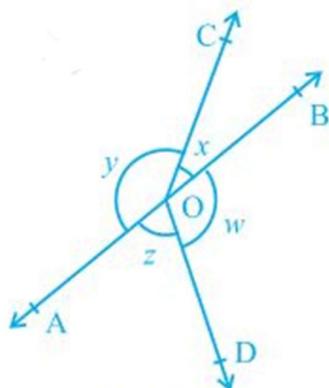


Fig. 6.16

Solution:

To prove AOB is a straight line, we will have to prove $x+y$ is a linear pair i.e. $x+y = 180^\circ$

We know that the angles around a point are 360° , so

$$x+y+w+z = 360^\circ$$

In the question, it is given that,

$$x+y = w+z$$

$$\text{So, } (x+y)+(x+y) = 360^\circ$$

$$2(x+y) = 360^\circ$$

$$\therefore (x+y) = 180^\circ \text{ (Hence proved).}$$

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ . OS is another ray lying between rays OP and OR . Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$.

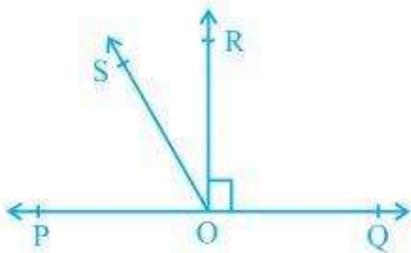


Fig. 6.17

Solution:

In the question, it is given that $(OR \perp PQ)$ and $\angle POQ = 180^\circ$

$$\text{We can write it as } \angle ROP = \angle ROQ = 90^\circ$$

We know that

$$\angle ROP = \angle ROQ$$

It can be written as

$$\angle POS + \angle ROS = \angle ROQ$$

$$\angle POS + \angle ROS = \angle QOS - \angle ROS$$

$$\angle SOR + \angle ROS = \angle QOS - \angle POS$$

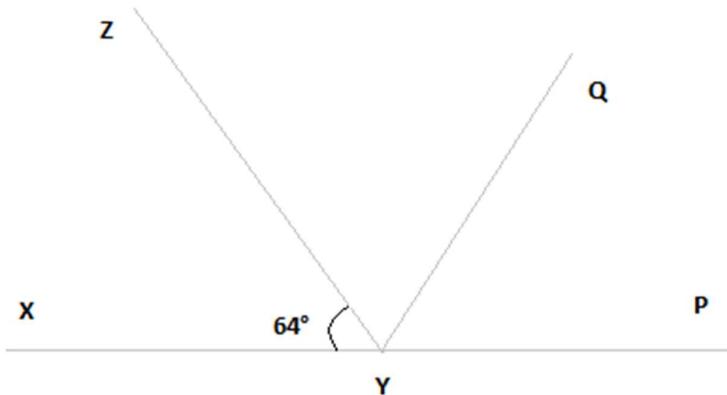
So we get

$$2\angle ROS = \angle QOS - \angle POS$$

Or, $\angle ROS = 1/2 (\angle QOS - \angle POS)$ (Hence proved).

6. It is given that $\angle XYZ = 64^\circ$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.

Solution:



Here, XP is a straight line

$$\text{So, } \angle XYZ + \angle ZYP = 180^\circ$$

Putting the value of $\angle XYZ = 64^\circ$, we get

$$64^\circ + \angle ZYP = 180^\circ$$

$$\therefore \angle ZYP = 116^\circ$$

From the diagram, we also know that $\angle ZYP = \angle ZYQ + \angle QYP$

Now, as YQ bisects $\angle ZYP$,

$$\angle ZYQ = \angle QYP$$

$$\text{Or, } \angle ZYP = 2\angle ZYQ$$

$$\therefore \angle ZYQ = \angle QYP = 58^\circ$$

$$\text{Again, } \angle XYQ = \angle XYZ + \angle ZYQ$$

By putting the value of $\angle XYZ = 64^\circ$ and $\angle ZYQ = 58^\circ$, we get.

$$\angle XYQ = 64^\circ + 58^\circ$$

$$\text{Or, } \angle XYQ = 122^\circ$$

$$\text{Now, reflex } \angle QYP = 180^\circ + \angle XYQ$$

We computed that the value of $\angle XYQ = 122^\circ$.

So,

$$\angle QYP = 180^\circ + 122^\circ$$

$$\therefore \angle QYP = 302^\circ$$

Exercise: 6.2 (Page No: 103)

1. In Fig. 6.28, find the values of x and y and then show that $AB \parallel CD$.

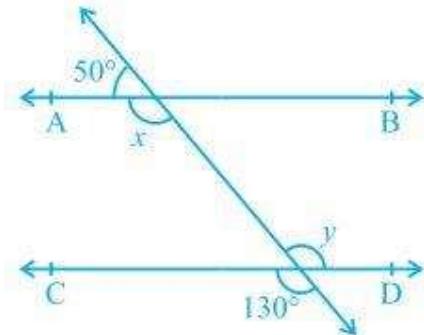


Fig. 6.28

Solution:

We know that a linear pair is equal to 180° .

$$\text{So, } x + 50^\circ = 180^\circ$$

$$\therefore x = 130^\circ$$

We also know that vertically opposite angles are equal.

$$\text{So, } y = 130^\circ$$

In two parallel lines, the alternate interior angles are equal. In this, $x = y = 130^\circ$

This proves that alternate interior angles are equal, so $AB \parallel CD$.

2. In Fig. 6.29, if $AB \parallel CD$, $CD \parallel EF$ and $y : z = 3 : 7$, find x .

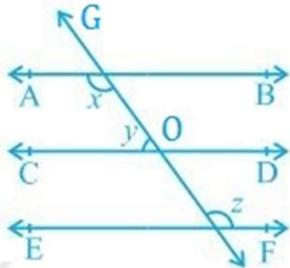


Fig. 6.29

Solution:

It is known that $AB \parallel CD$ and $CD \parallel EF$

As the angles on the same side of a transversal line sum up to 180° ,

$$x + y = 180^\circ \text{ ---(i)}$$

Also,

$\angle O = z$ (Since they are corresponding angles)

and, $y + \angle O = 180^\circ$ (Since they are a linear pair)

$$\text{So, } y + z = 180^\circ$$

Now, let $y = 3w$ and hence, $z = 7w$ (As $y : z = 3 : 7$)

$$\therefore 3w + 7w = 180^\circ$$

$$\text{Or, } 10w = 180^\circ$$

$$\text{So, } w = 18^\circ$$

$$\text{Now, } y = 3 \times 18^\circ = 54^\circ$$

$$\text{and, } z = 7 \times 18^\circ = 126^\circ$$

Now, angle x can be calculated from equation (i)

$$x + y = 180^\circ$$

$$\text{Or, } x + 54^\circ = 180^\circ$$

$$\therefore x = 126^\circ$$

3. In Fig. 6.30, if $AB \parallel CD$, $EF \perp CD$ and $\angle GED = 126^\circ$, find $\angle AGE$, $\angle GEF$ and $\angle FGE$.

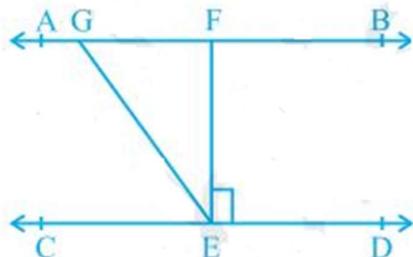


Fig. 6.30

Solution:

Since $AB \parallel CD$, GE is a transversal.

It is given that $\angle GED = 126^\circ$

So, $\angle GED = \angle AGE = 126^\circ$ (As they are alternate interior angles)

Also,

$$\angle GED = \angle GEF + \angle FED$$

$$\text{As } EF \perp CD, \angle FED = 90^\circ$$

$$\therefore \angle GED = \angle GEF + 90^\circ$$

$$\text{Or, } \angle GEF = 126^\circ - 90^\circ = 36^\circ$$

$$\text{Again, } \angle FGE + \angle GED = 180^\circ \text{ (Transversal)}$$

Putting the value of $\angle GED = 126^\circ$, we get

$$\angle FGE = 54^\circ$$

So,

$$\angle AGE = 126^\circ$$

$$\angle GEF = 36^\circ \text{ and}$$

$$\angle FGE = 54^\circ$$

4. In Fig. 6.31, if $PQ \parallel ST$, $\angle PQR = 110^\circ$ and $\angle RST = 130^\circ$, find $\angle QRS$.

[Hint : Draw a line parallel to ST through point R.]

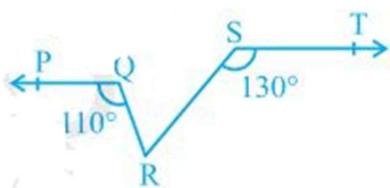
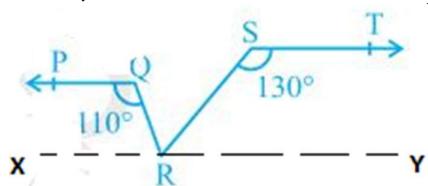


Fig. 6.31

Solution:

First, construct a line XY parallel to PQ.



We know that the angles on the same side of the transversal is equal to 180° .

$$\text{So, } \angle PQR + \angle QRX = 180^\circ$$

$$\text{Or, } \angle QRX = 180^\circ - 110^\circ$$

$$\therefore \angle QRX = 70^\circ$$

Similarly,

$$\angle RST + \angle SRY = 180^\circ$$

$$\text{Or, } \angle SRY = 180^\circ - 130^\circ$$

$$\therefore \angle SRY = 50^\circ$$

Now, for the linear pairs on the line XY-

$$\angle QRX + \angle QRS + \angle SRY = 180^\circ$$

Putting their respective values, we get

$$\angle QRS = 180^\circ - 70^\circ - 50^\circ$$

$$\text{Hence, } \angle QRS = 60^\circ$$

5. In Fig. 6.32, if $AB \parallel CD$, $\angle APQ = 50^\circ$ and $\angle PRD = 127^\circ$, find x and y .

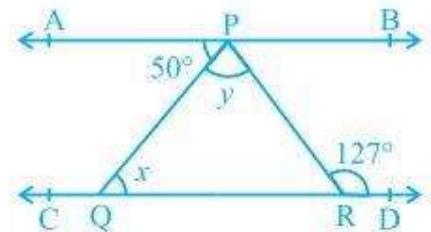


Fig. 6.32

Solution:

From the diagram,

$\angle APQ = \angle PQR$ (Alternate interior angles)

Now, putting the value of $\angle APQ = 50^\circ$ and $\angle PQR = x$, we get

$$x = 50^\circ$$

Also,

$\angle APR = \angle PRD$ (Alternate interior angles)

Or, $\angle APR = 127^\circ$ (As it is given that $\angle PRD = 127^\circ$)

We know that

$$\angle APR = \angle APQ + \angle QPR$$

Now, putting values of $\angle QPR = y$ and $\angle APR = 127^\circ$, we get

$$127^\circ = 50^\circ + y$$

$$\text{Or, } y = 77^\circ$$

Thus, the values of x and y are calculated as:

$$x = 50^\circ \text{ and } y = 77^\circ$$

6. In Fig. 6.33, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD . Prove that $AB \parallel CD$.

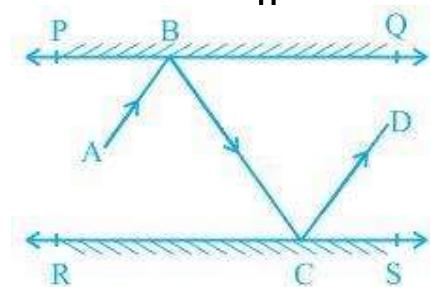


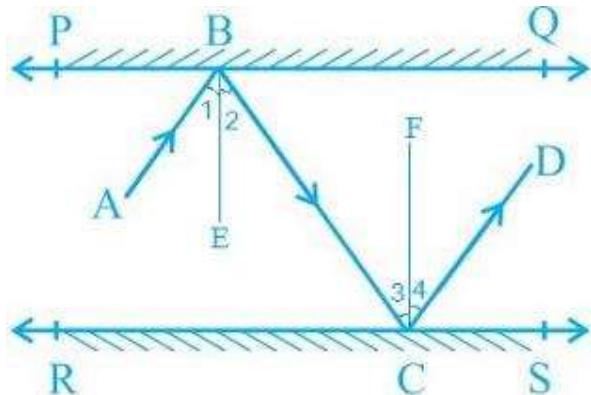
Fig. 6.33

Solution:

First, draw two lines, BE and CF , such that $BE \perp PQ$ and $CF \perp RS$.

Now, since $PQ \parallel RS$,

So, $BE \parallel CF$



We know that,

Angle of incidence = Angle of reflection (By the law of reflection)

So,

$$\angle 1 = \angle 2 \text{ and}$$

$$\angle 3 = \angle 4$$

We also know that alternate interior angles are equal. Here, $BE \perp CF$ and the transversal line BC cuts them at B and C

So, $\angle 2 = \angle 3$ (As they are alternate interior angles)

$$\text{Now, } \angle 1 + \angle 2 = \angle 3 + \angle 4$$

$$\text{Or, } \angle ABC = \angle DCB$$

So, $AB \parallel CD$ (alternate interior angles are equal)

Exercise: 6.3 (Page No: 107)

1. In Fig. 6.39, sides QP and RQ of $\triangle PQR$ are produced to points S and T , respectively. If $\angle SPR = 135^\circ$ and $\angle PQT = 110^\circ$, find $\angle PRQ$.

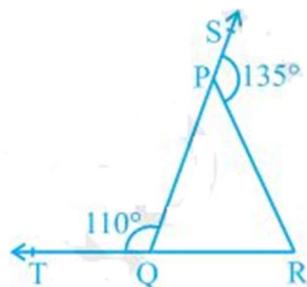


Fig. 6.39

Solution:

It is given the TQR is a straight line, and so, the linear pairs (i.e. $\angle TQP$ and $\angle PQR$) will add up to 180°

$$\text{So, } \angle TQP + \angle PQR = 180^\circ$$

Now, putting the value of $\angle TQP = 110^\circ$, we get

$$\angle PQR = 70^\circ$$

Consider the ΔPQR ,

Here, the side QP is extended to S , and so $\angle SPR$ forms the exterior angle.

Thus, $\angle SPR$ ($\angle SPR = 135^\circ$) is equal to the sum of interior opposite angles. (Triangle property)

$$\text{Or, } \angle PQR + \angle PRQ = 135^\circ$$

Now, putting the value of $\angle PQR = 70^\circ$, we get

$$\angle PRQ = 135^\circ - 70^\circ$$

$$\text{Hence, } \angle PRQ = 65^\circ$$

2. In Fig. 6.40, $\angle X = 62^\circ$, $\angle XYZ = 54^\circ$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$, respectively of ΔXYZ , find $\angle OZY$ and $\angle YOZ$.

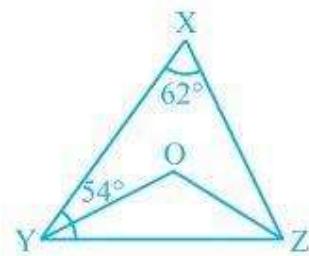


Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle.

$$\text{So, } \angle X + \angle XYZ + \angle XZY = 180^\circ$$

Putting the values as given in the question, we get

$$62^\circ + 54^\circ + \angle XZY = 180^\circ$$

$$\text{Or, } \angle XZY = 64^\circ$$

Now, we know that ZO is the bisector, so

$$\angle OZY = \frac{1}{2} \angle XZY$$

$$\therefore \angle OZY = 32^\circ$$

Similarly, YO is a bisector, so

$$\angle OYZ = \frac{1}{2} \angle XYZ$$

$$\text{Or, } \angle OYZ = 27^\circ \text{ (As } \angle XYZ = 54^\circ\text{)}$$

Now, as the sum of the interior angles of the triangle,

$$\angle OZY + \angle OYZ + \angle O = 180^\circ$$

Putting their respective values, we get

$$\angle O = 180^\circ - 32^\circ - 27^\circ$$

$$\text{Hence, } \angle O = 121^\circ$$

3. In Fig. 6.41, if $AB \parallel DE$, $\angle BAC = 35^\circ$ and $\angle CDE = 53^\circ$, find $\angle DCE$.

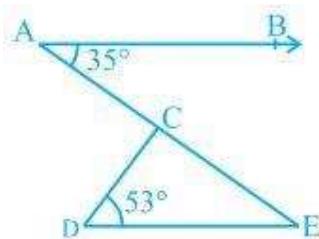


Fig. 6.41

Solution:

We know that AE is a transversal since $AB \parallel DE$

Here $\angle BAC$ and $\angle AED$ are alternate interior angles.

Hence, $\angle BAC = \angle AED$

It is given that $\angle BAC = 35^\circ$

$\angle AED = 35^\circ$

Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180° .

$$\therefore \angle DCE + \angle CED + \angle CDE = 180^\circ$$

Putting the values, we get

$$\angle DCE + 35^\circ + 53^\circ = 180^\circ$$

Hence, $\angle DCE = 92^\circ$

4. In Fig. 6.42, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^\circ$, $\angle RPT = 95^\circ$ and $\angle TSQ = 75^\circ$, find $\angle SQT$.

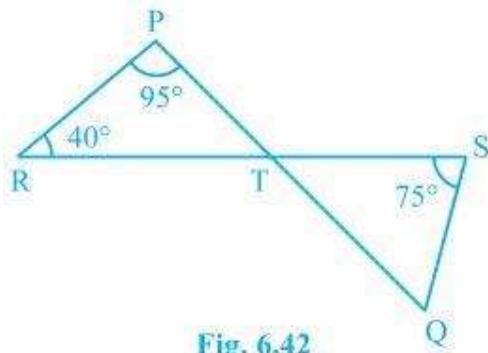


Fig. 6.42

Solution:

Consider triangle PRT.

$$\angle PRT + \angle RPT + \angle PTR = 180^\circ$$

So, $\angle PTR = 45^\circ$

Now $\angle PTR$ will be equal to $\angle STQ$ as they are vertically opposite angles.

So, $\angle PTR = \angle STQ = 45^\circ$

Again, in triangle STQ,

$$\angle TSQ + \angle PTR + \angle SQT = 180^\circ$$

Solving this, we get

$$74^\circ + 45^\circ + \angle SQT = 180^\circ$$

$$\angle SQT = 60^\circ$$

5. In Fig. 6.43, if $PQ \perp PS$, $PQ \parallel SR$, $\angle SQR = 28^\circ$ and $\angle QRT = 65^\circ$, then find the values of x and y .

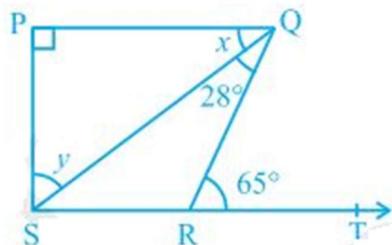


Fig. 6.43

Solution:

$x + \angle SQR = \angle QRT$ (As they are alternate angles since QR is transversal)

$$\text{So, } x + 28^\circ = 65^\circ$$

$$\therefore x = 37^\circ$$

It is also known that alternate interior angles are the same, and so

$$\angle QSR = x = 37^\circ$$

Also, now

$\angle QRS + \angle QRT = 180^\circ$ (As they are a Linear pair)

$$\text{Or, } \angle QRS + 65^\circ = 180^\circ$$

$$\text{So, } \angle QRS = 115^\circ$$

Using the angle sum property in $\triangle SPQ$,

$$\angle SPQ + x + y = 180^\circ$$

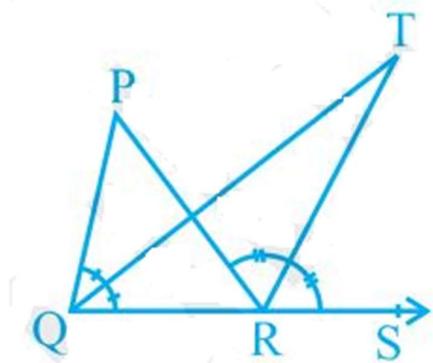
Putting their respective values, we get

$$90^\circ + 37^\circ + y = 180^\circ$$

$$y = 180^\circ - 127^\circ = 53^\circ$$

$$\text{Hence, } y = 53^\circ$$

6. In Fig. 6.44, the side QR of $\triangle PQR$ is produced to a point S. If the bisectors of $\angle PQR$ and $\angle PRS$ meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.

**Fig. 6.44****Solution:**

Consider the ΔPQR . $\angle PRS$ is the exterior angle, and $\angle QPR$ and $\angle PQR$ are the interior angles.

So, $\angle PRS = \angle QPR + \angle PQR$ (According to triangle property)

Or, $\angle PRS - \angle PQR = \angle QPR$ ————(i)

Now, consider the ΔQRT ,

$\angle TRS = \angle TQR + \angle QTR$

Or, $\angle QTR = \angle TRS - \angle TQR$

We know that QT and RT bisect $\angle PQR$ and $\angle PRS$, respectively.

So, $\angle PRS = 2 \angle TRS$ and $\angle PQR = 2 \angle TQR$

Now, $\angle QTR = \frac{1}{2} \angle PRS - \frac{1}{2} \angle PQR$

Or, $\angle QTR = \frac{1}{2} (\angle PRS - \angle PQR)$

From (i), we know that $\angle PRS - \angle PQR = \angle QPR$

So, $\angle QTR = \frac{1}{2} \angle QPR$ (hence proved).
